
Final Exam — Ordinary Differential Equations (WIGDV–07)

Wednesday 1 November 2017, 14.00h–17.00h

University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.

2. All answers need to be accompanied with an explanation or a calculation: only
answering “yes”, “no”, or “42” is not sufficient.

3. If p is the number of marks then the exam grade is G = 1 + p/10.

Problem 1 (2 + 10 = 12 points)

Consider the following Riccati equation:

y′ + (2x3 − 1)y − x2y2 = x4 − x+ 1.

(a) Show that φ(x) = x is a solution.

(b) Compute a solution that satisfies the initial condition y(0) = 1.

Problem 2 (2 + 5 + 6 = 13 points)

Consider the following differential equation:

(x2 − 9y2) dx+ 18xy dy = 0 where x > 0.

(a) Show that the equation is not exact.

(b) Compute an integrating factor of the form M(x, y) = φ(x).

(c) Compute the general solution in implicit form.

Problem 3 (4 + 12 + 4 = 20 points)

Consider the following 4× 4 matrix:

A =









2 −1 0 1
0 3 −1 0
0 1 1 0
0 −1 1 2









.

(a) Show that det(A− λI) = (λ− 2)4.

(b) Compute the matrix J of the Jordan canonical form of A. Do not compute Q!

(c) Compute eJt.
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Problem 4 (8 + 4 + 3 + 3 = 18 points)

Let a > 0 and provide the space C([0, a]) =
{

y : [0, a] → R : y is continuous
}

with
the norm

‖y‖ = sup
x∈[0,a]

|y(x)|w(x),

where w : [0, a] → R is a strictly positive function. Consider the operator:

T : C([0, a]) → C([0, a]), (Ty)(x) =

∫ x

0

ty(t) dt.

(a) Prove that for all y, z ∈ C([0, a]) we have

‖Ty − Tz‖ ≤ L‖y − z‖ where L = sup
x∈[0,a]

w(x)

∫ x

0

t

w(t)
dt.

(b) Compute the value of L for w(x) = 1 and w(x) = e−x2

.

(c) Formulate Banach’s fixed point theorem.

(d) Explain which of the two norms of part (b) is/are suitable for applying Banach’s
fixed point theorem. (It is given that with both norms C([0, a]) is a Banach
space.)

Problem 5 (12 points)

Solve the following initial value problem:

4t2u′′ + 13u = 7t2, u(1) =
1

3
, u′(1) =

11

3
.

Problem 6 (6 + 6 + 3 = 15 points)

Consider the following semi-homogeneous boundary value problem:

u′′ + λu = f(x), x ∈ [0, 1], u(0) = 0, u(1) = 0,

where λ ∈ R is a parameter and f : [0, 1] → R is a continuous function.

(a) Show that for λ ≤ 0 the homogeneous boundary value problem only has the
solution u = 0.

(b) Compute for λ > 0 the Green’s function Γ(x, ξ;λ).

(c) Explain how the eigenvalues of the homogeneous boundary value problem can
be determined from the Green’s function.

End of test (90 points)
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Solution of problem 1 (2 + 10 = 12 points)

(a) Setting y = x gives 1 + (2x3 − 1)x− x4 = x4 − x+ 1 which is indeed a correct
equality. Therefore, φ(x) = x is a solution.

(2 points)

(b) Let y be a solution of the Riccati equation and consider u = y − x, then

u′ = y′ − 1

= (1− 2x3)y + x2y2 + x4 − x

= (1− 2x3)(u+ x) + x2(u2 + 2xu+ x2) + x4 − x

= u+ x2u2.

(3 points)

This is a Bernoulli equation with α = 2. Let z = u1−α = 1/u, then

z′ = − u′

u2
= −1

u
− x2 = −z − x2 ⇔ z′ + z = −x2.

(3 points)

Multiplication with the integrating factor ex gives

(exz)′ = −x2ex ⇒ exz = (−2+2x−x2)ex+C ⇒ z = −2+2x−x2+Ce−x.

(3 points)

Therefore, we get the following general solution of the Riccati equation:

y = u+ x =
1

z
+ x = x+

1

−2 + 2x− x2 + Ce−x
.

The initial condition y(0) = 1 gives C = 3.

(1 point)
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Solution of problem 2 (2 + 5 + 6 = 13 points)

(a) Let g = x2 − 9y2 and h = 18xy, then gy = −18y and hx = 18y. Since gy 6= hx

the differential equation is not exact.
(2 points)

(b) The function M(x, y) = φ(x) is an integrating factor if and only if

(gφ)y = (hφ)x ⇔ gyφ = hxφ+hφ′ ⇔ φ′ =
gy − hx

h
φ ⇔ φ′ = −2

x
φ,

where primes denote differentiation with respect to x. An obvious solution is
φ(x) = 1/x2.

(5 points)

(c) Define the function

F (x, y) =

∫

g(x, y)φ(x) dx =

∫

1− 9y2

x2
dx = x+

9y2

x
+ C(y).

(3 points)

By construction we have that Fx = gφ. Demanding that Fy = hφ gives

18y

x
+ C ′(y) =

18y

x
⇒ C ′(y) = 0,

which means that we can take C(y) to be a constant function. For simplicity
we can choose C(y) = 0.

(2 points)

The general solution is now given by the implicit equation

x+
9y2

x
= K,

where K ∈ R is an arbitrary constant.

(1 point)
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Solution of problem 3 (4 + 12 + 4 = 20 points)

(a) Cleverly expanding the determinant along columns with many zeros gives:

det(A− λI) = det









2− λ −1 0 1
0 3− λ −1 0
0 1 1− λ 0
0 −1 1 2− λ









(along first column)

= (2− λ) det





3− λ −1 0
1 1− λ 0

−1 1 2− λ



 (along last column)

= (2− λ)2 det

[

3− λ −1
1 1− λ

]

= (2− λ)2((3− λ)(1− λ) + 1)

= (2− λ)2(λ2 − 4λ+ 4)

= (2− λ)2(λ− 2)2

= (λ− 2)2.

(4 points)

(b) From part (a) it follows that λ = 2 is the only eigenvalue of A. We have

A− λI =









0 −1 0 1
0 1 −1 0
0 1 −1 0
0 −1 1 0









∼









0 1 0 −1
0 0 1 −1
0 0 0 0
0 0 0 0









.

Counting the number of non-pivot columns gives

dimE1
λ = dimNul(A− λI) = 2.

(4 points)

We have

(A− λI)2 =









0 −2 2 0
0 0 0 0
0 0 0 0
0 0 0 0









from which we can immediately count the number of of non-pivot columns,
which gives

dimE2
λ = dimNul(A− λI)2 = 3.

(3 points)

It is clear that (A− λI)3 is the zero matrix, and therefore

dimE3
λ = dimNul(A− λI)3 = 4.

(1 point)
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We can now construct the dot diagram for A:

r1 = dimE1
λ = 2

r2 = dimE2
λ − dimE1

λ = 3− 2 = 1

r3 = dimE3
λ − dimE2

λ = 4− 3 = 1











⇒
• •
•
•

(2 points)

This means that we have a basis for the generalized eigenspaces of A consisting
of 2 cycles having length 3 and 1, respectively. Therefore, J consists of a 3× 3
block and a 1× 1 block:

J =









2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 2









.

(2 points)

(c) We can write J = D +N , where

D =









2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2









and N =









0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0









.

Since DN = ND we have eJt = eDteNt = eDt(I + Nt + 1
2
N2t2) where we have

used that Nk = 0 for all integers k ≥ 3. Therefore,

eJt = e2t









1 t 1
2
t2 0

0 1 t 0
0 0 1 0
0 0 0 1









.

(4 points)
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Solution of problem 4 (8 + 4 + 3 + 3 = 18 points)

(a) If y, z ∈ C([0, a]) and x ∈ [0, a], then

|(Ty)(x)− (Tz)(x)| =
∣

∣

∣

∣

∫ x

0

t(y(t)− z(t)) dt

∣

∣

∣

∣

≤
∫ x

0

t|y(t)− z(t)| dt

=

∫ x

0

|y(t)− z(t)|w(t) · t

w(t)
dt.

(3 points)

Since |y(t)− z(t)|w(t) ≤ ‖y − z‖ for all 0 ≤ t ≤ x ≤ a it follows that

|(Ty)(x)− (Tz)(x)| ≤ ‖y − z‖
∫ x

0

t

w(t)
dt.

(2 points)

Multiplying the last inequality with the function w gives

|(Ty)(x)− (Tz)(x)|w(x) ≤ ‖y − z‖w(x)
∫ x

0

t

w(t)
dt.

(2 points)

Since this inequality holds for all x ∈ [0, a] we can take the supremum on both
sides, which gives:

‖Ty − Tz‖ ≤ L‖y − z‖ where L = sup
x∈[0,a]

w(x)

∫ x

0

t

w(t)
dt.

(1 point)

(b) For w(x) = 1 we obtain the value

L = sup
x∈[0,a]

∫ x

0

t dt = sup
x∈[0,a]

1
2
x2 = 1

2
a2.

(2 points)

For w(x) = e−x2

we obtain the value

L = sup
x∈[0,a]

e−x2

∫ x

0

tet
2

dt = sup
x∈[0,a]

e−x2 · e
x2 − 1

2
= sup

x∈[0,a]

1− e−x2

2
=

1− e−a2

2
.

(2 points)

(c) Let D be a closed, nonempty subset in a Banach space B. Let the operator T :
D → B map D into itself, i.e., T (D) ⊂ D, and assume that T is a contraction:
there exists a number 0 < q < 1 such that

‖Tx− Ty‖ ≤ q‖x− y‖, ∀ x, y ∈ D,
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Then the fixed point equation Tx = x has precisely one solution x̄ ∈ D.
(3 points)

Moreover, iterations of T converge to this fixed point:

x0 ∈ D, xn+1 = Txn ⇒ lim
n→∞

xn = x̄.

(The last statement is not relevant to this problem.)

(d) For the application of Banach’s fixed point theorem we need that L < 1. When
w(x) = 1 this is only the case when a <

√
2. In the case w(x) = e−x2

we have
L < 1 for all a > 0. Indeed,

0 < e−a2 < 1 ⇒ 0 < 1− e−a2 < 1 ⇒ 1− e−a2

2
< 1.

Therefore, the norm with w(x) = e−x2

is better suitable.

(3 points)
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Solution of problem 5 (12 points)

Substituting u = tλ in the homogeneous differential equation gives

4λ(λ− 1) + 13 = 0 ⇔ (2λ− 1)2 + 12 = 0 ⇔ λ = 1
2
±

√
3i.

Hence, the homogeneous equation has the following general solution:

u = at
1
2
+
√
3i + bt

1
2
−
√
3i

= ae(
1
2
+
√
3i) log t + be(

1
2
−
√
3i) log t

=
√
t
[

ae
√
3i log t + be−

√
3i log t

]

=
√
t
[

(a+ b) cos(
√
3 log t) + (a− b)i sin(

√
3 log t)

]

=
√
t
[

A cos(
√
3 log t) +B sin(

√
3 log t)

]

,

where A = a+ b, B = (a− b)i, and a and b are arbitrary complex constants.

(5 points)

As a particular solution we try up = Kt2, where K is a constant. After substitution
in the differential equation we find K = 1

3
. Hence, the general solution of the

inhomogeneous equation is

u =
√
t
[

A cos(
√
3 log t) +B sin(

√
3 log t)

]

+
t2

3
,

where A and B are arbitrary constants.

(3 points)

The initial condition u(1) = 1
3
gives A + 1

3
= 1

3
so that A = 0.

(2 points)

Taking the derivative of u (and using that A = 0) gives

u′ =
B

2
√
t
sin(

√
3 log t) +B

√
t cos(

√
3 log t) ·

√
3

t
+

2t

3
.

The initial condition u′(1) = 11
3
gives B

√
3 + 2

3
= 11

3
so that B =

√
3.

(2 points)
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Solution of problem 6 (6 + 6 + 3 = 15 points)

(a) If λ < 0, then the homogeneous equation has the following general solution:

u(x) = ae−
√
−λx + be

√
−λx,

where a and b are arbitrary constants. The boundary conditions imply that

[

1 1

e−
√
−λ e

√
−λ

] [

a
b

]

=

[

0
0

]

.

Since the determinant of the coefficient matrix is nonzero it follows that a =
b = 0. Thus, for λ < 0 the homogeneous equation only has the trivial solution.

(4 points)

If λ = 0, then the homogeneous equation has the following general solution:

u(x) = a + bx,

where a and b are arbitrary constants. The boundary conditions imply that
[

1 0
1 1

] [

a
b

]

=

[

0
0

]

.

Since the determinant of the coefficient matrix is nonzero it follows that a =
b = 0. Thus, for λ = 0 the homogeneous equation only has the trivial solution.

(2 points)

(b) If λ > 0, then the homogeneous equation has the following general solution:

u(x) = a cos(
√
λx) + b sin(

√
λx)

(2 points)

A solution satisfying u(0) = 0 is given by

u1(x) = sin(
√
λx),

and a solution satisfying u(1) = 0 is given by

u2(x) = cos(
√
λ) sin(

√
λx)− sin(

√
λ) cos(

√
λx) = sin(

√
λ(x− 1)).

(2 points)

Their Wronskian determinant is

W = u1u
′
2 − u′

1u2 =
√
λ sin(

√
λ).

Since p(x) ≡ 1 the Green’s function is given by

Γ(x, ξ) =
1√

λ sin(
√
λ)

{

sin(
√
λξ) sin(

√
λ(x− 1)) if 0 ≤ ξ ≤ x ≤ 1,

sin(
√
λx) sin(

√
λ(ξ − 1)) if 0 ≤ x ≤ ξ ≤ 1.

(2 points)
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(c) The Green’s function does not exist for those values of λ which are eigenvalues
of the homogeneous boundary value problem. Note that the Green’s function
of part (b) fails to exist when λ = 0 or when λ = n2π2 where n ∈ N. We have
already shown that λ = 0 is not an eigenvalue; in this case the Green’s function
does exist, but it is only given by a formula different from the one determined
in part (b). However, λ = n2π2 where n ∈ N is an eigenvalue as can be easily
checked.
(3 points)
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