Final Exam - Ordinary Differential Equations (WIGDV-07)

Wednesday 1 November 2017, 14.00h-17.00h
University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.
2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or " 42 " is not sufficient.
3. If p is the number of marks then the exam grade is $G=1+p / 10$.

Problem $1(2+10=12$ points $)$

Consider the following Riccati equation:

$$
y^{\prime}+\left(2 x^{3}-1\right) y-x^{2} y^{2}=x^{4}-x+1 .
$$

(a) Show that $\phi(x)=x$ is a solution.
(b) Compute a solution that satisfies the initial condition $y(0)=1$.

Problem $2(2+5+6=13$ points $)$
Consider the following differential equation:

$$
\left(x^{2}-9 y^{2}\right) d x+18 x y d y=0 \quad \text { where } \quad x>0 .
$$

(a) Show that the equation is not exact.
(b) Compute an integrating factor of the form $M(x, y)=\phi(x)$.
(c) Compute the general solution in implicit form.

Problem $3(4+12+4=20$ points $)$
Consider the following 4×4 matrix:

$$
A=\left[\begin{array}{rrrr}
2 & -1 & 0 & 1 \\
0 & 3 & -1 & 0 \\
0 & 1 & 1 & 0 \\
0 & -1 & 1 & 2
\end{array}\right]
$$

(a) Show that $\operatorname{det}(A-\lambda I)=(\lambda-2)^{4}$.
(b) Compute the matrix J of the Jordan canonical form of A. Do not compute Q !
(c) Compute $e^{J t}$.

Problem $4(8+4+3+3=18$ points $)$

Let $a>0$ and provide the space $C([0, a])=\{y:[0, a] \rightarrow \mathbb{R}: y$ is continuous $\}$ with the norm

$$
\|y\|=\sup _{x \in[0, a]}|y(x)| w(x),
$$

where $w:[0, a] \rightarrow \mathbb{R}$ is a strictly positive function. Consider the operator:

$$
T: C([0, a]) \rightarrow C([0, a]), \quad(T y)(x)=\int_{0}^{x} t y(t) d t
$$

(a) Prove that for all $y, z \in C([0, a])$ we have

$$
\|T y-T z\| \leq L\|y-z\| \quad \text { where } \quad L=\sup _{x \in[0, a]} w(x) \int_{0}^{x} \frac{t}{w(t)} d t .
$$

(b) Compute the value of L for $w(x)=1$ and $w(x)=e^{-x^{2}}$.
(c) Formulate Banach's fixed point theorem.
(d) Explain which of the two norms of part (b) is/are suitable for applying Banach's fixed point theorem. (It is given that with both norms $C([0, a])$ is a Banach space.)

Problem 5 (12 points)

Solve the following initial value problem:

$$
4 t^{2} u^{\prime \prime}+13 u=7 t^{2}, \quad u(1)=\frac{1}{3}, \quad u^{\prime}(1)=\frac{11}{3} .
$$

Problem $6(6+6+3=15$ points $)$

Consider the following semi-homogeneous boundary value problem:

$$
u^{\prime \prime}+\lambda u=f(x), \quad x \in[0,1], \quad u(0)=0, \quad u(1)=0
$$

where $\lambda \in \mathbb{R}$ is a parameter and $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function.
(a) Show that for $\lambda \leq 0$ the homogeneous boundary value problem only has the solution $u=0$.
(b) Compute for $\lambda>0$ the Green's function $\Gamma(x, \xi ; \lambda)$.
(c) Explain how the eigenvalues of the homogeneous boundary value problem can be determined from the Green's function.

End of test (90 points)

Solution of problem $1(2+10=12$ points $)$
(a) Setting $y=x$ gives $1+\left(2 x^{3}-1\right) x-x^{4}=x^{4}-x+1$ which is indeed a correct equality. Therefore, $\phi(x)=x$ is a solution.
(2 points)
(b) Let y be a solution of the Riccati equation and consider $u=y-x$, then

$$
\begin{aligned}
u^{\prime} & =y^{\prime}-1 \\
& =\left(1-2 x^{3}\right) y+x^{2} y^{2}+x^{4}-x \\
& =\left(1-2 x^{3}\right)(u+x)+x^{2}\left(u^{2}+2 x u+x^{2}\right)+x^{4}-x \\
& =u+x^{2} u^{2} .
\end{aligned}
$$

(3 points)

This is a Bernoulli equation with $\alpha=2$. Let $z=u^{1-\alpha}=1 / u$, then

$$
z^{\prime}=-\frac{u^{\prime}}{u^{2}}=-\frac{1}{u}-x^{2}=-z-x^{2} \quad \Leftrightarrow \quad z^{\prime}+z=-x^{2} .
$$

(3 points)

Multiplication with the integrating factor e^{x} gives $\left(e^{x} z\right)^{\prime}=-x^{2} e^{x} \quad \Rightarrow \quad e^{x} z=\left(-2+2 x-x^{2}\right) e^{x}+C \quad \Rightarrow \quad z=-2+2 x-x^{2}+C e^{-x}$.

(3 points)

Therefore, we get the following general solution of the Riccati equation:

$$
y=u+x=\frac{1}{z}+x=x+\frac{1}{-2+2 x-x^{2}+C e^{-x}} .
$$

The initial condition $y(0)=1$ gives $C=3$.
(1 point)

Solution of problem $2(2+5+6=13$ points $)$
(a) Let $g=x^{2}-9 y^{2}$ and $h=18 x y$, then $g_{y}=-18 y$ and $h_{x}=18 y$. Since $g_{y} \neq h_{x}$ the differential equation is not exact.
(2 points)
(b) The function $M(x, y)=\phi(x)$ is an integrating factor if and only if
$(g \phi)_{y}=(h \phi)_{x} \quad \Leftrightarrow \quad g_{y} \phi=h_{x} \phi+h \phi^{\prime} \quad \Leftrightarrow \quad \phi^{\prime}=\frac{g_{y}-h_{x}}{h} \phi \quad \Leftrightarrow \quad \phi^{\prime}=-\frac{2}{x} \phi$,
where primes denote differentiation with respect to x. An obvious solution is $\phi(x)=1 / x^{2}$.
(5 points)
(c) Define the function

$$
F(x, y)=\int g(x, y) \phi(x) d x=\int 1-\frac{9 y^{2}}{x^{2}} d x=x+\frac{9 y^{2}}{x}+C(y) .
$$

(3 points)

By construction we have that $F_{x}=g \phi$. Demanding that $F_{y}=h \phi$ gives

$$
\frac{18 y}{x}+C^{\prime}(y)=\frac{18 y}{x} \quad \Rightarrow \quad C^{\prime}(y)=0
$$

which means that we can take $C(y)$ to be a constant function. For simplicity we can choose $C(y)=0$.

(2 points)

The general solution is now given by the implicit equation

$$
x+\frac{9 y^{2}}{x}=K,
$$

where $K \in \mathbb{R}$ is an arbitrary constant.

(1 point)

Solution of problem $3(4+12+4=20$ points $)$
(a) Cleverly expanding the determinant along columns with many zeros gives:

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left[\begin{array}{rrrr}
2-\lambda & -1 & 0 & 1 \\
0 & 3-\lambda & -1 & 0 \\
0 & 1 & 1-\lambda & 0 \\
0 & -1 & 1 & 2-\lambda
\end{array}\right] \quad \text { (along first column) } \\
& =(2-\lambda) \operatorname{det}\left[\begin{array}{rrr}
3-\lambda & -1 & 0 \\
1 & 1-\lambda & 0 \\
-1 & 1 & 2-\lambda
\end{array}\right] \quad \text { (along last column) } \\
& =(2-\lambda)^{2} \operatorname{det}\left[\begin{array}{rr}
3-\lambda & -1 \\
1 & 1-\lambda
\end{array}\right] \\
& =(2-\lambda)^{2}((3-\lambda)(1-\lambda)+1) \\
& =(2-\lambda)^{2}\left(\lambda^{2}-4 \lambda+4\right) \\
& =(2-\lambda)^{2}(\lambda-2)^{2} \\
& =(\lambda-2)^{2} .
\end{aligned}
$$

(4 points)

(b) From part (a) it follows that $\lambda=2$ is the only eigenvalue of A. We have

$$
A-\lambda I=\left[\begin{array}{rrrr}
0 & -1 & 0 & 1 \\
0 & 1 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{rrrr}
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Counting the number of non-pivot columns gives

$$
\operatorname{dim} E_{\lambda}^{1}=\operatorname{dim} \operatorname{Nul}(A-\lambda I)=2 .
$$

(4 points)

We have

$$
(A-\lambda I)^{2}=\left[\begin{array}{rrrr}
0 & -2 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

from which we can immediately count the number of of non-pivot columns, which gives

$$
\operatorname{dim} E_{\lambda}^{2}=\operatorname{dim} \operatorname{Nul}(A-\lambda I)^{2}=3
$$

(3 points)

It is clear that $(A-\lambda I)^{3}$ is the zero matrix, and therefore

$$
\operatorname{dim} E_{\lambda}^{3}=\operatorname{dim} \operatorname{Nul}(A-\lambda I)^{3}=4
$$

(1 point)

We can now construct the dot diagram for A :

$$
\left.\begin{array}{l}
r_{1}=\operatorname{dim} E_{\lambda}^{1}=2 \\
r_{2}=\operatorname{dim} E_{\lambda}^{2}-\operatorname{dim} E_{\lambda}^{1}=3-2=1 \\
r_{3}=\operatorname{dim} E_{\lambda}^{3}-\operatorname{dim} E_{\lambda}^{2}=4-3=1
\end{array}\right\} \Rightarrow \quad \bullet \bullet
$$

(2 points)

This means that we have a basis for the generalized eigenspaces of A consisting of 2 cycles having length 3 and 1 , respectively. Therefore, J consists of a 3×3 block and a 1×1 block:

$$
J=\left[\begin{array}{llll}
2 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right] .
$$

(2 points)

(c) We can write $J=D+N$, where

$$
D=\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right] \quad \text { and } \quad N=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since $D N=N D$ we have $e^{J t}=e^{D t} e^{N t}=e^{D t}\left(I+N t+\frac{1}{2} N^{2} t^{2}\right)$ where we have used that $N^{k}=0$ for all integers $k \geq 3$. Therefore,

$$
e^{J t}=e^{2 t}\left[\begin{array}{rrrr}
1 & t & \frac{1}{2} t^{2} & 0 \\
0 & 1 & t & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(4 points)

Solution of problem $4(8+4+3+3=18$ points $)$
(a) If $y, z \in C([0, a])$ and $x \in[0, a]$, then

$$
\begin{aligned}
|(T y)(x)-(T z)(x)| & =\left|\int_{0}^{x} t(y(t)-z(t)) d t\right| \\
& \leq \int_{0}^{x} t|y(t)-z(t)| d t \\
& =\int_{0}^{x}|y(t)-z(t)| w(t) \cdot \frac{t}{w(t)} d t
\end{aligned}
$$

(3 points)

Since $|y(t)-z(t)| w(t) \leq\|y-z\|$ for all $0 \leq t \leq x \leq a$ it follows that

$$
|(T y)(x)-(T z)(x)| \leq\|y-z\| \int_{0}^{x} \frac{t}{w(t)} d t .
$$

(2 points)

Multiplying the last inequality with the function w gives

$$
|(T y)(x)-(T z)(x)| w(x) \leq\|y-z\| w(x) \int_{0}^{x} \frac{t}{w(t)} d t
$$

(2 points)

Since this inequality holds for all $x \in[0, a]$ we can take the supremum on both sides, which gives:

$$
\|T y-T z\| \leq L\|y-z\| \quad \text { where } \quad L=\sup _{x \in[0, a]} w(x) \int_{0}^{x} \frac{t}{w(t)} d t .
$$

(1 point)

(b) For $w(x)=1$ we obtain the value

$$
L=\sup _{x \in[0, a]} \int_{0}^{x} t d t=\sup _{x \in[0, a]} \frac{1}{2} x^{2}=\frac{1}{2} a^{2} .
$$

(2 points)

For $w(x)=e^{-x^{2}}$ we obtain the value

$$
L=\sup _{x \in[0, a]} e^{-x^{2}} \int_{0}^{x} t e^{t^{2}} d t=\sup _{x \in[0, a]} e^{-x^{2}} \cdot \frac{e^{x^{2}}-1}{2}=\sup _{x \in[0, a]} \frac{1-e^{-x^{2}}}{2}=\frac{1-e^{-a^{2}}}{2} .
$$

(2 points)

(c) Let D be a closed, nonempty subset in a Banach space B. Let the operator T : $D \rightarrow B$ map D into itself, i.e., $T(D) \subset D$, and assume that T is a contraction: there exists a number $0<q<1$ such that

$$
\|T x-T y\| \leq q\|x-y\|, \quad \forall x, y \in D
$$

Then the fixed point equation $T x=x$ has precisely one solution $\bar{x} \in D$. (3 points)
Moreover, iterations of T converge to this fixed point:

$$
x_{0} \in D, \quad x_{n+1}=T x_{n} \quad \Rightarrow \quad \lim _{n \rightarrow \infty} x_{n}=\bar{x}
$$

(The last statement is not relevant to this problem.)
(d) For the application of Banach's fixed point theorem we need that $L<1$. When $w(x)=1$ this is only the case when $a<\sqrt{2}$. In the case $w(x)=e^{-x^{2}}$ we have $L<1$ for all $a>0$. Indeed,

$$
0<e^{-a^{2}}<1 \Rightarrow 0<1-e^{-a^{2}}<1 \quad \Rightarrow \quad \frac{1-e^{-a^{2}}}{2}<1
$$

Therefore, the norm with $w(x)=e^{-x^{2}}$ is better suitable.
(3 points)

Solution of problem 5 (12 points)

Substituting $u=t^{\lambda}$ in the homogeneous differential equation gives

$$
4 \lambda(\lambda-1)+13=0 \quad \Leftrightarrow \quad(2 \lambda-1)^{2}+12=0 \quad \Leftrightarrow \quad \lambda=\frac{1}{2} \pm \sqrt{3} i .
$$

Hence, the homogeneous equation has the following general solution:

$$
\begin{aligned}
u & =a t^{\frac{1}{2}+\sqrt{3} i}+b t^{\frac{1}{2}-\sqrt{3} i} \\
& =a e^{\left(\frac{1}{2}+\sqrt{3} i\right) \log t}+b e^{\left(\frac{1}{2}-\sqrt{3} i\right) \log t} \\
& =\sqrt{t}\left[a e^{\sqrt{3} i \log t}+b e^{-\sqrt{3} i \log t}\right] \\
& =\sqrt{t}[(a+b) \cos (\sqrt{3} \log t)+(a-b) i \sin (\sqrt{3} \log t)] \\
& =\sqrt{t}[A \cos (\sqrt{3} \log t)+B \sin (\sqrt{3} \log t)],
\end{aligned}
$$

where $A=a+b, B=(a-b) i$, and a and b are arbitrary complex constants.
(5 points)
As a particular solution we try $u_{p}=K t^{2}$, where K is a constant. After substitution in the differential equation we find $K=\frac{1}{3}$. Hence, the general solution of the inhomogeneous equation is

$$
u=\sqrt{t}[A \cos (\sqrt{3} \log t)+B \sin (\sqrt{3} \log t)]+\frac{t^{2}}{3}
$$

where A and B are arbitrary constants.

(3 points)

The initial condition $u(1)=\frac{1}{3}$ gives $A+\frac{1}{3}=\frac{1}{3}$ so that $A=0$.

(2 points)

Taking the derivative of u (and using that $A=0$) gives

$$
u^{\prime}=\frac{B}{2 \sqrt{t}} \sin (\sqrt{3} \log t)+B \sqrt{t} \cos (\sqrt{3} \log t) \cdot \frac{\sqrt{3}}{t}+\frac{2 t}{3} .
$$

The initial condition $u^{\prime}(1)=\frac{11}{3}$ gives $B \sqrt{3}+\frac{2}{3}=\frac{11}{3}$ so that $B=\sqrt{3}$.
(2 points)

Solution of problem $6(6+6+3=15$ points $)$
(a) If $\lambda<0$, then the homogeneous equation has the following general solution:

$$
u(x)=a e^{-\sqrt{-\lambda} x}+b e^{\sqrt{-\lambda} x}
$$

where a and b are arbitrary constants. The boundary conditions imply that

$$
\left[\begin{array}{cc}
1 & 1 \\
e^{-\sqrt{-\lambda}} & e^{\sqrt{-\lambda}}
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

Since the determinant of the coefficient matrix is nonzero it follows that $a=$ $b=0$. Thus, for $\lambda<0$ the homogeneous equation only has the trivial solution.

(4 points)

If $\lambda=0$, then the homogeneous equation has the following general solution:

$$
u(x)=a+b x,
$$

where a and b are arbitrary constants. The boundary conditions imply that

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

Since the determinant of the coefficient matrix is nonzero it follows that $a=$ $b=0$. Thus, for $\lambda=0$ the homogeneous equation only has the trivial solution.
(2 points)
(b) If $\lambda>0$, then the homogeneous equation has the following general solution:

$$
u(x)=a \cos (\sqrt{\lambda} x)+b \sin (\sqrt{\lambda} x)
$$

(2 points)

A solution satisfying $u(0)=0$ is given by

$$
u_{1}(x)=\sin (\sqrt{\lambda} x),
$$

and a solution satisfying $u(1)=0$ is given by

$$
u_{2}(x)=\cos (\sqrt{\lambda}) \sin (\sqrt{\lambda} x)-\sin (\sqrt{\lambda}) \cos (\sqrt{\lambda} x)=\sin (\sqrt{\lambda}(x-1))
$$

(2 points)

Their Wronskian determinant is

$$
W=u_{1} u_{2}^{\prime}-u_{1}^{\prime} u_{2}=\sqrt{\lambda} \sin (\sqrt{\lambda}) .
$$

Since $p(x) \equiv 1$ the Green's function is given by

$$
\Gamma(x, \xi)=\frac{1}{\sqrt{\lambda} \sin (\sqrt{\lambda})} \begin{cases}\sin (\sqrt{\lambda} \xi) \sin (\sqrt{\lambda}(x-1)) & \text { if } 0 \leq \xi \leq x \leq 1 \\ \sin (\sqrt{\lambda} x) \sin (\sqrt{\lambda}(\xi-1)) & \text { if } 0 \leq x \leq \xi \leq 1\end{cases}
$$

(2 points)

(c) The Green's function does not exist for those values of λ which are eigenvalues of the homogeneous boundary value problem. Note that the Green's function of part (b) fails to exist when $\lambda=0$ or when $\lambda=n^{2} \pi^{2}$ where $n \in \mathbb{N}$. We have already shown that $\lambda=0$ is not an eigenvalue; in this case the Green's function does exist, but it is only given by a formula different from the one determined in part (b). However, $\lambda=n^{2} \pi^{2}$ where $n \in \mathbb{N}$ is an eigenvalue as can be easily checked.
(3 points)

